移動式裝備的大量普及化,輔以人工智慧與物聯網技術的發展,全球進入高度數位化時代。依據貝爾實驗室的預測,2030年時美國在運輸、通信、能源、工業生產等基礎設施的數位化程度,將由今日的20%急劇提升至60%,意即無論是自駕車、3D列印生產、智慧電網均將成為市場主流(Saniee et al. 2017)。但另一方面,聯合國於2015年通過2030永續發展目標,提出17項全球邁向永續發展的核心目標,藉此引領政府、地方政府、企業、公民團體等行動者,在未來十五年間的決策、投資與行動方向,可達成在環境涵容能力下滿足全球人類基本社會需求的永續願景。因此如何促使數位化趨勢,有助於永續發展目標的落實,為國際研究社群極為關注的議題。
永續導向數位革命展望
知名的德國全球變遷諮詢委員會(Germany Advisory Council on Global Change, WBGU )既規劃於2019年出版〈數位化與永續轉型〉(Digitization and the Transformation towards Sustainability)旗艦報告,探討可有效因應數位化對環境、勞動市場、貧富差距等潛在影響之治理機制。而由奧地利應用系統分析研究院、斯德哥爾摩韌性研究中心、聯合國永續發展研究網絡三個知名永續發展領域的研究機構領銜進行的「2050世界願景」 (The World in 2050)旗艦研究計畫,於2018年7 月聯合國SDG高階政策論壇舉辦期間所發表〈落實永續發展目標的關鍵轉型〉(Transformations to Achieve the Sustainable Development Goals)首份報告中,亦將永續導向的數位化科技與創新與「能源轉型」、「循環經濟」等,並列為全球推動永續發展的六大關鍵行動之一(如圖1)。強調全球應掌握數位化革命所創造之綜合效益,藉由前瞻規劃與建立適當治理機制,提早因應科技創新於就業、階級差距與倫理上的潛在負面影響。該報告中列舉出數位基礎設施的建構、開放的線上服務以及利用數位化系統提升能資源效率等發展方向,以促使數位化可創造公眾利益。而面對其潛在負面影響,則是提出可避免網路服務壟斷的稅制與管制工具、弭平數位落差的教育體制等政策配套(見表1)。
圖1:落實永續發展目標的六大關鍵轉型行動(譯自TWI2050)
表1:永續數位轉型(譯自TWI2050)
永續數位轉型 四大原則
範例
數位基礎設施
普及化的高品質與低價格的行動寬頻網路
線上服務
可協助公共服務與參與的線上治理管道
加速貿易與商業服務的線上支付系統
可確保網路隱私權的管制方式
建構健保與教育相關的全國性線上平台
有助提升能資源效率的數位系統
智慧電網與協助打造智慧城市的物聯網
永續導向數位革命的政策工具
可因應數位化下所得差距加劇的配套措施。
可避免網路服務壟斷的稅制與管制工具。
弭平數位落差的教育體制。
符合人類價值與永續發展典範的新興數化技術發展。
物聯網促使製程創新
當台灣討論永續發展議題之時,一大關鍵乃是如何促使耗能產業願意改善其製程,整體性提升能源與資源效率。而德國知名智庫國際前瞻永續研究院(International Institute for Advanced Sustainability Studies,IASS)的「數位化與其對永續性之衝擊」(Digitalisation and Impacts on Sustainability)研究團隊指出,數位化革命對工業部門在環境面的影響上,則可藉由導入工業物聯網提升資源效率、永續能源整合與透明度(Niehoff and Beier, 2018)。
在資源效率方面,藉由導入3D列印技術於工業製程後,有助削減原物料的需求。如依據評估,美國航空製造業藉由導入此技術,可將飛機機體的重量削減9%~17%。藉此技術,2050年時美國航空製造業每年可減2萬噸的金屬物料需求,並藉由機體輕量化減少6.4%的燃料消耗(Huang et al. 2016)。實際案例上,目前奇異公司(General Electric)已於其最新的LEAP 引擎製造時,導入以3D列印所設計的燃料噴嘴,不僅增進噴嘴耐用性,更減少25%的重量,並藉由流體最佳化設計,提升燃燒效率,進而減少引擎的燃料消耗(Ford and Despeisse, 2016) 。
在能源方面,根據澳洲研究機構的調查,藉由強化製程控制,可協助食品加工、飲料、金屬製品等製造業節能4%以上,且此類節能投資只要兩年即可回收。另一方面,數位化的即時監控與連結可以協助切換設備的能源消耗,並轉移至離峰或是再生能源供應充足的時段,有助於推動需量反應(IEA, 2017)。根據IEA的統計,全球有50%以上的需量反應收入主要來自於工業部門,隨著數位化技術的導入將有望更加擴大電力調配的規模,並透過虛擬電廠(virtual power plant)所涵蓋的資訊平台、監測、用戶(aggregators)等網絡能夠有效地協助該措施的應用與整併分散式的再生能源系統。
於製造業中導入物聯網,掌握製程中各單元的環境績效,可有助於建構更完整的環境管理系統。更重要的是,可在藉由掌握整個價值鏈導入物聯網後的大數據,促使價值鏈上各公司所提出的企業永續報告的資訊,更為透明化,以利不同利害相關人相互監督,激勵各企業提升環境績效,打造環境價值鏈(Niehoff and Beier, 2018)。
掌握轉型契機
根據國際前瞻永續研究院(IASS)研究群就德國與中國境內的自動化、機械工程、航太、ICT等產業所進行的調查,顯示多數業者也認為透過數位化科技可提高資源效率與增加再生能源的使用比例(Beier et al., 2017)。例如針對中國業者調查中顯示,八成以上的受訪者認為物聯網可有助於節約能源與物料消耗。而已導入環境管理系統的企業中,有84.5%以上的受訪者認為數位化有助於企業永續策略的落實(Beier et al., 2018)。同時,德國內的參與者有半數以上也認為工業4.0對於環境管理系統(EMS)會帶來影響(Niehoff and Beier, 2018)。
台灣大學社會科學院風險社會與政策研究中心於 2018.10.03(三)上午舉辦「數位化浪潮下,永續轉型如何乘浪而行?」論壇。邀請到德國知名智庫國際前瞻永續研究院(International Institute for Advanced Sustainability Studies, IASS)的科學主任Ortwin Renn 、資深研究員Ilan Chabay與台大地理系簡旭伸教授擔任講者。Ortwin Renn 教授將分享IASS 與「數位化與永續轉型」有關的初步研究成果,Ilan Chabay教授為〈落實永續發展目標的關鍵轉型〉(Transformations to Achieve the Sustainable Development Goals)報告的共同作者,將分享該報告中所提出的「永續導向的科技與創新」概念與落實機制。簡旭伸教授將於本次論壇中,分析獨裁政府 (如中國) 與民主政府 (如台灣) 所進行的不同數理治理策略、理論化威權智慧( authoritarian smart) 與民主智慧 (democratic smart),並且以此分析人類文明面對數位化浪潮下,如何擷取機會與迎接挑戰,共同為全球永續發展盡份心力。
Beier, G.; Niehoff, S.; Xue, B. 2018. More Sustainability in Industry through Industrial Internet of Things? Appl. Sci. 8, 219
Ford, S. & Despeisse, M. 2016. Additive manufacturing and sustainability: an exploratory study of the advantages and challenges.” Journal of Cleaner Production, 137: 1573-1587.
German Advisory Council on Global Change (WBGU). 2018. Digitalization: What we need to talk about.
Huang,R., M. Riddle, D. Graziano, J. Warren, S. Das, S. Nimbalkar, J.Cresko, E. Masanet. 2016. Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components. J. Cleaner Production, 135 (2016), pp. 1159-1170
International Energy Agency(IEA). 2017. Digitalization& Energy. Paris:IEA
Niehoff, S.; Beier, G. 2018. Industrie 4.0 and a sustainable development: A short study on the perception and expectations of experts in Germany. Int. J. Innov. Sustain. Dev, Vol. 12, No. 3, 360-374.
Saniee, I., Kamat, S., Prakash, S. & Weldon, M. 2017. Will productivity growth return in the new digital era? An analysis of the potential impact on productivity of the fourth industrial revolution. Bell Labs Technical Journal, Vol.20. pp 4-20.
TWI2050 - The World in 2050. 2018. Transformations to Achieve the Sustainable Development Goals. Report prepared by The World in 2050 initiative. International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria. www.twi2050.org.
United Nations Industrial Development Organization (2017) Accelerating clean energy through Industry 4.0: manufacturing the next revolution. Vienna:UNIDO
CLERMONT-FERRAND, France, September 24, 2018 (ENS)
To the French tire manufacturer Michelin, Ambition 2048 means a whole new strategy of using sustainable materials in tire manufacturing and recycling. It means that in the year 2048 Michelin plans to manufacture its tires using 80 percent sustainable materials, and that 100 percent of those tires will be recycled.
圖片來源:米其林Michelin
Headquartered in Clermont-Ferrand, Michelin is present in 170 of the world’s 197 countries, has 111,700 employees and operates 68 production facilities in 17 countries, which collectively produced 187 million tires in 2016.
The World Business Council for Sustainable Development estimates that in 2018 there will be one billion end-of-life tires generated in the world – around 25 million tons.
Today the worldwide recovery rate for tires is 70 percent and the recycling rate is 50 percent. The remaining 20 percent are transformed into energy. By comparison, 14 percent of plastic packaging or containers are recovered each year.
To accomplish Ambition 2048, Michelin is investing in high technology recycling technologies that will enable the company to increase this content to 80 percent sustainable material.
Michelin plans to help create a circular economy with a new tire concept called VISION. This airless tire would be made of bio-sourced and recycled products with a biodegradable tread that is renewable with a 3D printer.
Today, over 200 raw materials go into tire composition. Sixty percent of the rubber used in the tire industry is synthetic, produced from petroleum-derived hydrocarbons, although natural rubber is still necessary for the remaining 40 percent.
Michelin’s Ambition 2048 sustainable development goal includes a commitment to research into bio-sourced materials, such as Biobutterfly, a program launched in 2012 with Axens and IFP Energies Nouvelles.
Biobutterfly involves the creation of synthetic elastomers from biomass such as wood, straw or beet.
Michelin is integrating more recycled and renewable materials in its tires. This strategy motivated the acquisition in late 2017 of the American company Lehigh Technologies, based in Georgia, which specializes in high technology micronized rubber powders derived from recycled tires.
These innovative materials reduce the amount of non-renewable raw materials needed for tire production, such as elastomers or carbon black.
Micronized rubber powder is a low cost sustainable material that can substitute for other components used in the manufacture of tires, as well as plastics, asphalt and construction materials.
Major world tire manufacturers, as well as companies specialized in asphalt and construction materials are already Lehigh Technologies’ customers.
When Ambition 2048 is achieved, Michelin estimates that the potential savings will be equivalent to:
* – 33 million barrels of oil saved per year, enough to fill 16.5 supertankers
* – One month’s total energy consumption of everyone in France
* – 65 billion kilometers driven by an average sedan (8L / 100 km) per year